Simulation Flow Around a NACA 4415 Wing Model

At the Hochschule Karlsruhe, Germany, a NACA model 4415 was tested in a wind tunnel by students as part of a fluid mechanical lecture. The experiment was done for different approach angles of the NACA-model. The experiment was also simulated with CFD-tools such as NOGRID points. We outline the physical problem and results obtained by NOGRID points for an approach angle of 20°. 

Physical model

The wind tunnel is modeled by a sufficiently large cuboid flow domain with "open" faces: Except for the inflow face the other five faces are outflow faces with a zero Dirichlet boundary condition for the pressure and zero Neumann boundary condition for the velocity. Using a "closed" box with only a small outflow area, opposite to the inflow area, would require a much larger fluid domain as otherwise the dynamic pressure would considerably increase.

At the inflow face the air flows in at 35.7 m/s in a circular area with a diameter of 0.35 m, outside the area the velocity is set to zero. This reflects the blast nozzle of the wind tunnel sufficiently well.

The faces of the NACA-model carry a wall slip condition. Compared to a noslip condition this yields much better numerical results as it avoids very large gradients of the velocity especially at the front of the model and it introduces only a small error.

NACA 4415 wing

Figure 1: A cut through the cuboid flow domain with the NACA model, the inflow is at the right-hand side

Smoothing length in the flow domain NACA wing

Figure 2: The smoothing length (which determines the point density) in the flow domain

NACA model with stream traces

Figure 3: NACA model with stream traces

NACA model with stream traces seen from behind the model

Figure 4: NACA model with stream traces seen from behind the model

Comparison of experiment and simulation

Figure 5: Comparison of experiment and simulation

In this case study we've computed the air flow around a NACA wing. The preprocessing requires no volume mesh generation and therefore the modelling part is very easy. So, the User can directly start to import the model and choose the smoothing length distribution, which effectively determines the density of points for the computation. As we are interested in the pressure profile at the surface of the NACA model we increase the density around the model. The high pressure gradient at the front of the model and the thinness at the back require an even higher density (or equivalently a smaller smoothing length). The distribution is shown in figure 2.

Comparison of experiment and simulation

In figure 3 and 4 path integration yields stream traces, which show the typical wake vortex generated by the positive and negative dynamic pressure below and above the NACA-model, respectively.

In order to verify the simulation quantitatively as well, the measured pressure profile along the surface of the NACA-model is compared to the simulation. The experimental data and the simulation data are presented in figure 5. They show a very good agreement of the experiment and the simulation. The small differences are probably due to small simplifications done in the model such as the rather small fluid domain, the omission of the suspension gear of the model and the simplified blast nozzle of the wind tunnel.

NOGRID unites abilities to handle air flows and allows the simulation of any conceivable wing geometry and operation modes such as

  • computation is in 2D, axis-symmetric or full 3D solving complete Navier-Stokes-Equations
  • easy and intuitive setup of the air flow case
  • free definable material properties by equations or curves for each fluid
  • large wing geometries with small gaps or holes
  • open or closed domains including moving of additional parts
  • any material combination for the fluids and for the wing material (in case of heat transfer)


Nogrid's strengths

NOGRID's particular strengths are the rapid preprocessing (no fluid grid needs to be generated, only the boundary mesh, inner finite points are generated automatically depending on User setting initially and during computation) and the outstandingly short computation time even for complicated cavities.
As you can see in the image below, the boundary of the geometry still requires a mesh to allow the interior finite points to detect the boundary. The boundary must therefore be meshed and the finite points inside are automatically generated during the simulation controlled by User specifications.
Easy Modelling

Easy and fast modelling: Build geometry, mesh boundary, setup the case and start computation

What is CFD from NOGRID?


CFD solves the fundamental equations that define the fluid flow process. With CFD software from NOGRID every engineer makes better decisions by predicting, analyzing and controlling fluid flow, heat and mass transfer or chemical reaction. By using NOGRID software you receive information on essential flow characteristics as for example flow distribution. Using it additional to testing and experimentation NOGRID software helps to improve the evaluation of your design – resulting in better construction and operation parameters, increasing planning security and money savings due to faster time to the marketplace for your product or process.




With NOGRID, you choose professional CFD software and services – our aim is helping you to be successful. When you decide to work with NOGRID you choose close cooperation with a dynamic, flat hierarchies-organization. Short information channels result in quick and accurate professional support and service. Our team consists of highly qualified employees, who are experts in fields such as numerical simulation or computational fluid dynamics. Based on our know-how, we are pleased to offer the following services, responding to your individual requirements:




In our two-days training courses you will learn, how to use NOGRID CFD software efficiently. Our technical support team will teach you how to handle and solve different cases.

For more details please refer to Training Courses →


Technical Support


We offer full professional support from the minute you start using our software, by telephone or by email. Contact us, when ever needed.

For more details please refer to Software Support




Lack of time or resources and other constraints often make outsourcing an attractive solution. We help you with your flow modeling needs. Based on our engineering expertise in this field we offer individual numerical simulation services matching the unique needs of your organization.

For more details please refer to Simulation Services →


Göttelmannstr. 13B
55130 Mainz, Germany

Simulation Software from Nogrid

Follow Us: